Determinant

Most said determinants are square schemes.

Determinant is a function depending on *n* that associates a scalar, det(A), to every $n \times n$ square matrix *A*. Must be careful how marked determinants, because it is similar mark, as matrices.

By agreement, matrix is marking with square brackets, for example A = $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$.

Determinant is marking with
$$|A| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 or det (A) = $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

Finding determinants

2×2 (2 rows and 2 columns)

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Multiply the elements of the so-called main diagonal minus multiplied elements of the supporting diagonal.

Example:

$$\begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} = 3 \circ 7 - 4 \circ 5 = 21 - 20 = 1 \qquad \begin{vmatrix} -1 & 3 \\ -5 & 12 \end{vmatrix} = (-1) \circ 12 - (-5) \circ 3 = -12 + 15 = 3$$

3×3 (3 rows and 3 columns)

Determinants 3×3 , we can develop in any row or column. First of all, to every element assign sign + or -

 $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$ Just to remind you: rows are \longrightarrow , and column

 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} =$ If you want to develop for example, by the first row =

$$= + a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = \text{Or if we do development by the second column:}$$
$$= -b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + b_2 \begin{vmatrix} a_1 & c_1 \\ a_3 & c_3 \end{vmatrix} - b_3 \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$

The best is, of course, to develop by that column or the row where where we have the most zeros !

Example: Calculate the value of determinant $\begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix} =?$

Solution:

 $\begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix}$ = First, above each number write the sign: $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$, or if is easier to you just above the numbers in the column or row, on which you decided to expand determinant.

We have decided on the second row because it has a zero.

$$\begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix} = -1\begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} + 7\begin{vmatrix} 5 & 1 \\ 2 & 2 \end{vmatrix} - 0\begin{vmatrix} 5 & 3 \\ 2 & 3 \end{vmatrix} = -1(3 \circ 2 - 1 \circ 3) + 7(5 \circ 2 - 2 \circ 1) = -3 + 56 = 53$$

Rule of Sarrus

The sum of the products of three diagonal north-west to south-east lines of matrix elements, minus the sum of the products of three diagonal south-west to north-east lines of elements when the copies of the first two columns of the matrix are written beside it as below:

Example: Calculate the value of determinant $\begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix} = ?$

$$\begin{vmatrix} 5 & 3 & 1 \\ 1 & 7 & 0 \\ 2 & 3 & 2 \end{vmatrix} \begin{vmatrix} 5 & 3 \\ 1 & 7 \\ 2 & 3 \end{vmatrix} = 5 \circ 7 \circ 2 + 3 \circ 0 \circ 2 + 1 \circ 1 \circ 3 - 3 \circ 1 \circ 2 - 5 \circ 0 \circ 3 - 1 \circ 7 \circ 2 = 70 + 0 + 3 - 6 - 0 - 14 = 53$$

So, both ways, we get the same result, and you can select what is easier.

$4\!\times\!4$ (4 rows and 4 columns)

$$\begin{vmatrix} a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3} \\ a_{4} & b_{4} & c_{4} & d_{4} \end{vmatrix} =$$
We can develop it by any row or column! Add signs :
$$\begin{vmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{vmatrix}$$

We will, for example, to develop determined by the first column:

$$\begin{vmatrix} a_{1}^{+} & b_{1} & c_{1} & d_{1} \\ a_{2}^{-} & b_{2}^{-} & c_{2}^{-} & d_{2} \\ a_{3}^{+} & b_{3}^{-} & c_{3}^{-} & d_{3} \\ a_{4}^{-} & b_{4}^{-} & c_{4}^{-} & d_{4} \end{vmatrix} = + a_{1} \begin{vmatrix} b_{2}^{-} & c_{2}^{-} & d_{2} \\ b_{3}^{-} & c_{3}^{-} & d_{3} \\ b_{4}^{-} & c_{4}^{-} & d_{4} \end{vmatrix} - a_{2} \begin{vmatrix} b_{1}^{-} & c_{1}^{-} & d_{1} \\ b_{3}^{-} & c_{3}^{-} & d_{3} \\ b_{4}^{-} & c_{4}^{-} & d_{4} \end{vmatrix} + a_{3} \begin{vmatrix} b_{1}^{-} & c_{1}^{-} & d_{1} \\ b_{2}^{-} & c_{2}^{-} & d_{2} \\ b_{4}^{-} & c_{4}^{-} & d_{4} \end{vmatrix} - a_{4} \begin{vmatrix} b_{1}^{-} & c_{1}^{-} & d_{1} \\ b_{2}^{-} & c_{2}^{-} & d_{2} \\ b_{3}^{-} & c_{3}^{-} & d_{3} \end{vmatrix}$$

Of course, now we have to develop each of the four determinants with 3 rows and 3 columns

Agree that this is not easy.

DETERMINANT CHARACTERISTICS will help us in solving problems!

DETERMINANT CHARACTERISTICS

- 1. Determinant changes sign if the two rows of columns change their places.
- 2. Value of determinants does not change if all rows and columns change their places.

3.
$$\mathbf{k} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1k & b_1k & c_1k \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1k & b_1 & c_1 \\ a_2k & b_2 & c_2 \\ a_3k & b_3 & c_3 \end{vmatrix} = \mathbf{etc.}$$

$$\begin{vmatrix} a_1 & mb_1 & c_1 \\ a_2 & mb_2 & c_2 \\ a_3 & mb_3 & c_3 \end{vmatrix} = \mathbf{m} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\mathbf{4.} \quad \begin{vmatrix} a_1 & b_1 + m_1 & c_1 \\ a_2 & b_2 + m_2 & c_2 \\ a_3 & b_3 + m_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & m_1 & c_1 \\ a_2 & m_2 & c_2 \\ a_3 & m_3 & c_3 \end{vmatrix}$$

5. If all elements of a row (column) equal to zero, the value of determinant is zero.

6. If elements of the two rows (or columns) have the same value, of determinant is zero, again.

Example:

7. If the two species (columns) proportional to one another, the value determinants is zero.

Example:

8. Value of determinant remains unchanged if the elements of a row (column) is added to the elements of some other row (column). [we can multiply that row with the same number if we need that!]

The eight properties will help us to solve determinants 4×4 , 5×5

Example1.

	1	2	4	-1	
Calculate the value:	2	2	-3	5	
	-3	1	1	-2	
	4	2	1	- 2	

Solution:

The idea is:, using properties of the determinant No.8

1	2	4	-1
2	2	-3	5
-3	1	1	-2
4	2	1	-2

First, we make zero where is 4. How? I row * (-4) + IV row _____ goes to IV row

1 \circ (-4)+4=0
$2 \circ (-4) + 2 = -6$
$4 \circ (-4) + 1 = -15$
(-1)(-4)+(-2)=2

$$\begin{vmatrix} 1 & 2 & 4 & -1 \\ 2 & 2 & -3 & 5 \\ -3 & 1 & 1 & -2 \\ 4 & 2 & 1 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 4 & -1 \\ 2 & 2 & -3 & 5 \\ -3 & 1 & 1 & -2 \\ 0 & -6 & -15 & 2 \end{vmatrix}$$

Next, we make zero where is - 3.

I row *3 + III row — III row

 $1 \circ 3+(-3)=0$ $2 \circ 3+1 = 7$ $4 \circ 3+1 = 13$ $(-1) \circ 3+(-2)=-5$

$$\begin{vmatrix} 1 & 2 & 4 & -1 \\ 2 & 2 & -3 & 5 \\ -3 & 1 & 1 & -2 \\ 0 & -6 & -15 & 2 \end{vmatrix} \xrightarrow{1} \begin{vmatrix} 1 & 2 & 4 & -1 \\ 2 & 2 & -3 & 5 \\ 0 & 7 & 13 & -5 \\ 0 & -6 & -15 & 2 \end{vmatrix}$$

And finaly, we make zero where is 2. /

(-2)*I row + II row → II row

If you develop determined by the first column, we will have only one member!

$$\begin{vmatrix} 1 & 2 & 4 & -1 \\ 0 & -2 & -11 & 7 \\ 0 & 7 & 13 & -5 \\ 0 & -6 & -15 & 2 \end{vmatrix} = \begin{vmatrix} -2 & -11 & 7 \\ 7 & 13 & -5 \\ -6 & -15 & 2 \end{vmatrix}$$
 Rule of Sarrus ...

Of course you do not need to go step by step, but immediately take all three zero!

Example 2. Calculate
$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix} = ?$$

Solution: $\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & c \end{vmatrix}$ below a in the first column, we have to made all zero!
If row - I row \longrightarrow If row
if $|a = a = a = \begin{vmatrix} a & a & a & a \\ 0 & b - a & b - a & b - a \\ 0 & b - a & c - a & c - a \end{vmatrix}$ From the first row we can draw a common a .

$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \end{vmatrix}$$
From the first row we can draw a common a .

$$\begin{vmatrix} a & a & a & a \\ 0 & b - a & b - a & b - a \\ 0 & b - a & c - a & d - a \end{vmatrix}$$
From the first row we can draw a common a .

$$\begin{vmatrix} a & a & a & a \\ 0 & b - a & c - a & d - a \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & b - a & c - a & d - a \end{vmatrix}$$

$$= a \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & b - a & c - a & d - a \end{vmatrix}$$

$$= a \begin{vmatrix} b - a & b - a & b - a \\ 0 & b - a & c - a & d - a \end{vmatrix}$$

Go again to make the zero in the first column!

- II row − I row → II row : c-a-b+a=c-b

- III row – I row _____ III row : c-a-b+a=c-b and d-a-b+a=d-b

$$a(b-a)\begin{vmatrix} 1 & b-a & b-a \\ 1 & c-a & c-a \\ 1 & c-a & d-a \end{vmatrix} = a(b-a)\begin{vmatrix} 1 & b-a & b-a \\ 0 & c-b & c-b \\ 0 & c-b & d-b \end{vmatrix} = a(b-a)\begin{vmatrix} c-b & c-b \\ c-b & d-b \end{vmatrix} = a(b-a)(c-b)(d-c)$$

So, the solution is:

$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix} = a(b-a)(c-b)(d-c)$$